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Abstract 

The recently proposed procedure [5] for the construction of isospectral benzenoid 
graphs has been examined in detail. Necessary and sufficient conditions for the construction 
of isospectral benzenoid graphs with isomorphic H-graphs are formulated. The inapplicability 
of the procedure for the construction of isospectral benzenoid graphs with an even 
number of vertices has been proven. 

1. Introduction 

Graph isospectrality and related subjects (e.g. endospectrality of vertices) are 
continuously drawing the attention of researchers in the fields of graph theory and 
mathematical chemistry [1]. Quite recently, a series of papers reporting new insights 
has appeared [2-5]. The present paper is a continuation of the study of the isospectrality 
of benzenoid graphs. The interest in this subject has suddenly been increased after 
the conjecture on the non-existence of isospectral benzenoid graphs (IBGs) was 
announced [6]. Shortly after, this conjecture was (partially) disproved by a procedure 
designed especially for constructing IBGs [5]. 

The procedure is based on a method proposed by Heilbronner [7] and therefore 
we call it Heilbronner-like. (A precise definition of the Heilbronner-like procedure 
is given later in this paper.) In addition to Heilbronner's original method [7], the 
approach used in [5] points out some rules specific for benzenoid graphs. In this 
paper, we examine these specific rules in view of their necessity and sufficiency. 

So far, by this procedure only IBGs with an odd number of vertices have been 
generated. Here, we prove that this is an unavoidable limitation of the Heilbronner- 
like procedure, i.e. that IBGs with an even number of vertices (and, consequently, 
those with a Kekul6 structure) cannot be obtained in this way. 
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2. Heilbronner- l ike procedure for the construction of IBGs 

A bipartite graph G can be colored with two colors so that no two adjacent 
vertices have the same color. For a given colored G, an H-graph H(G) is obtained 
by the following steps: (i) vertices of one chosen color are removed together with 
incident (i.e. all) edges; (ii) the remaining vertices are reconnected: between each 
two vertices, one inserts as many edges as they had common neighbors in G; 
(iii) to each vertex, one adds as many loops as it had neighbors in G. In this way, 
two (in the general case different) H(G) graphs can be obtained. If the vertices of 
G are conveniently numbered, the square of its adjacency matrix possesses a block- 
diagonal form. The two possible H(G) graphs are related to these blocks as to the 
adjacency matrices [7]. H-graphs with the loops removed will be referred to as H'-  
graphs. 

It has been shown in [7] that two bipartite graphs G1 and G2 with an equal 
number of vertices are isospectral if they possess an isomorphic pair {H(G1), H(G2)}. 
According to Heilbronner's original procedure, one tries to construct an isospectral 
pair by starting from a given G1, and by attempting to reconstruct a different G2 
from H(G1), so that H(G1)---H(G2). An illustrative example is depicted in fig. 1. 
Any other procedure for the construction of isospectral bipartite graphs will be 
called Heilbronner-like if and only if the isospectrality of the constructed graphs 
is implied by the isomorphism of their H-graphs. 

2 

2 

2 3 2 

G 1 H(G I)--~-I(G2) Gz 

Fig. 1. An example of isospectral graphs constructed by Heilbronner's 
procedure. Vertices in G 1 and G 2 which are retained in their H-graphs 
are marked by heavy dots. Numbers at vertices oftt(G1) = H(G2) denote 
the respective number of loops. This example also presents an unsuccessful 
attempt to obtain a pair of IBGs by Heilbrormer's original procedure. 

One can hardly expect to obtain a pair of IBGs in this way by starting from 
a randomly chosen benzenoid graph G1, since the reconstruction of H(G1) into 
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another benzenoid graph G2 is rarely possible. For this reason, the recipe [5] does 
not follow the original scheme [7]. The conditions which H(G) must fulfill in order 
to be reconstructable into two different benzenoid graphs are formulated [5] in 
terms of structural details of its dualist. 

The dualist of the triangular graph H(G), denoted as D[H(G)], is defined 
analogously as for hexagonal graphs in [8,9]: D[H(G)] is the geometrical object 
obtained from H(G) by placing a point into the middle of each ring (in this case, 
a triangle) and by linking the points positioned in the rings sharing a common edge. 
Figure 2 illustrates the relationship between a benzenoid graph G and its derivatives 
H(G) and D[H(G)]. 

t - .  

\ 
/ 

;/ 

( 
( 

G H(G) 

Fig. 2. A benzenoid graph G and its derivatives H(G) 
and D[H(G)]. Dashed lines in G and tf(G) indicate 
the way of generating H(G) and D[H(G)], respectively. 

D[t-I(G)I 

When a dualist meeting the formulated requirements is chosen, the construction 
proceeds by deriving the appropriate H'(G). This is done in a straightforward and 
unambiguous manner. Two IBGs are then reconstructed from H'(G) in a few steps. 
Firstly, new vertices are added into nonadjacent triangles of H'(G). Two complementary 
sets of triangles can be chosen for this purpose. Each inscribed vertex is linked to 
the three apices of the triangle, and the edges - sides of the triangle - are removed. 
After that, the old edges of H'(G) remain only on the perimeter. Each of them is 
replaced by a new vertex linked to the vertices which were terminating the edge. 
The two graphs thus obtained are related by the two complementary sets of triangles 
into which new vertices were inscribed during the construction. An example in 
fig. 3 demonstrates the described procedure step-by-step. 

The conditions which a dualist chosen for the construction of IBGs must 
satisfy have been given in [5]. A more complete list is given here: 
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~ H'(G) 
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G 1 G2 

Fig. 3. An example of IBGs constructed by the 
Heilbrormer-like procedure. G 1 and G 2 are the 
smallest existing pair of IBGs (with respect to 
the number of vertices and hexagons) as 
established by an exhaustive examination [10]. 
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(i) The dualist must be embeddable into the hexagonal lattice. 

(ii) If any two vertices of the dualist embedded in the hexagonal lattice are linked 
by a single edge or by a single vertex, this edge or vertex must also be 
contained in the dualist. 

(iii) The dualist cannot contain any terminal vertex. 

(iv) Hexagons are the only elementary cycles in the dualist. 

(v) The structural details named M-fragments (see fig. 4) must be absent from 
the dualist. 

(vi) The two vertex-colorings of the dualist (using two colors) must not be symmetry- 
equivalent. 

M-fragment 

1 
H'(M-fragment) 

2 
o 

two corresponding 
benzenoid fragments 

rederived 
H-graphs 

Fig. 4. The structural detail named M-fragment is forbidden in the dualist. The 
vertices marked by heavy dots are divalent, the others may be trivalent. The 
Heilbronner-like procedure transforms the M-fragment into two benzenoid fragments 
with different loop numbers on the corresponding vertices in their H-graphs. 

3. The necessity of conditions (i)-(vi) 

Recall that a benzenoid graph is a subgraph of the hexagonal lattice induced 
by the vertices lying on and inside the given cycle [9]. Figure 5(a) shows that an 
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Fig. 5. (a) An H'-graph of the hexagonal lattice (marked with a solid 
line) is the triangular lattice (marked with a dashed line). (b) The dualist 
of the triangular lattice (solid line) is the hexagonal lattice (dashed line). 

H'-graph of the hexagonal lattice is the triangular lattice. H'(G) is a subgraph of 
the triangular lattice in the same way as G is a subgraph of the hexagonal lattice: 
a cycle formed by connecting the next-nearest neighbors on the perimeter of G is 
embedded into the triangular lattice and the subgraph induced by the vertices lying 
on and inside the cycle is H'(G). Figure 5(b) shows that a dualist of the triangular 
lattice is again the hexagonal lattice (now viewed as a geometrical object, not as 
a graph). Thus, D[H(G)] of any benzenoid graph G is a part of the hexagonal lattice 
and therefore embeddable on this lattice. 
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Fig. 6. The transformation of the three forbidden details in 
the dualist: (a) an edge of the hexagonal lattice between two 
vertices of the dualist; (b) a vertex of the hexagonal lattice 
between two vertices of the dualist; (c) a terminal vertex. 

If an edge between two vertices is present in the hexagonal lattice but not 
in the embedded dualist, it is impossible to construct the appropriate H-graph, as 
is shown in fig. 6(a). If, instead of an edge, condition (ii) is violated in the same 
way by a vertex, it is not possible to transform the appropriate H-graph into two 
benzenoid graphs, as fig. 6(b) shows. A similar problem is present in the transformation 
of a terminal vertex of  the dualist (fig. 6(c)). 

According to the definition of a benzenoid graph [9], edges of  the hexagonal 
lattice lying inside the perimeter of  G are also in G. This holds not only for the 
perimeter, but for any cycle in G. This property applies also to H(G) with respect 
to the underlying triangular lattice and to D[H(G)] embedded on the hexagonal 
lattice. As a consequence, D[H(G)] does not contain elementary cycles other than 
hexagons. 

The last claimed condition requires that the dualist has two distinguishable 
vertex colorings with two colors. This means that the two different colorings of  the 
dualist D[H(G)] cannot be transformed into each other by means of  some operation 
of  the symmetry group of  D[H(G)]. It was shown in [5] that a colored D[H(G)] 
completely determines the way of its reconstruction into a benzenoid graph G 
(assuming that vertices of  one of the two colors are chosen to represent the triangles 
of  H(G) into which vertices of G will be inscribed during the construction). Clearly, 
if the two colorings of D[H(G)] are indistinguishable, so will the finally produced 
graphs: these will not only be isospectral, but isomorphic too. 
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the dualist 

/ \ 

H'(G:):-H'(G2) 

G1 G2 

Fig. 7. The construction of IBGs starting from the dualist 
possessing M-fragments. The produced G 1 and G 2 are isomorphic, 

Figure 4 depicts the way in which an M-fragment of the starting dualist is 
transformed into fragments of the final benzenoid graphs. Nothing opposes the 
regular way of the reconstruction, but a problem arises with different numbers of 
loops on the vertices of H(G1) and H(G2) designated in fig. 4. This difference brings 
into question the required isomorphism of H(G1) and H(G2). We prove that the 
isomorphism of H(G1) and H(G2) in this case implies the isomorphism of G1 and 
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G 2, and thus represents the trivial solution. Assuming that the labeling of H'(G) is 
retained in H(G1) and H(G2), the presumed isomorphism implies a permutation of 
labels by which H(GI) is mapped into H(G2). This isomorphism is not the trivial 
one, because the vertices related to an M-fragment have different numbers of loops 
in H(G1) and H(G2). This represents an automorphism of H'(G) which involves a 
cyclic permutation of vertices related to M-fragments of D[H(G)]. By this permutation, 
the vertex of H'(G) having three loops in, for example, H(G1) is mapped into the 
vertex with two loops in H(G2), and vice versa. It follows that the triangles in H'(G) 
being "full" during the construction are mapped into those which are "empty". 
Bearing in mind the correspondence between the "full" and the "empty" triangles 
in H(G) and vertex colors in D[H(G)], the automorphism of H'(G) implies the 
automorphism of D[H(G)] by which all vertices of one color are mapped into those 
of another. Thence, the two colored D[H(G)] cannot be distinguished and G1 and 
G 2 obtained from them must be isomorphic. Figure 7 provides an illustrative example. 

The necessity of conditions (i)-(vi) is thereby proven. Before examining 
their sufficiency, we assert some propositions which will be useful in the further 
consideration. They also enable an important conclusion about the limitation of the 
Heilbronner-like procedure when it is applied to the construction of IBGs. 

. IBGs with an even number of vertices cannot be constructed by the Heilbronner- 
like procedure 

The perimeter of a benzenoid graph can be considered as a series of di- and 
trivalent vertices. A benzenoid graph is completely determined by specifying this 
sequence [1 1]. The subsequences of only trivalent vertices characterize the structural 
details of the perimeter known as fissure, bay, cove and fjord [9], with one, two, 
three and four consecutive trivalent vertices, respectively. Let us prove the following 
theorem about the minimal number of odd-length sequences. 

THEOREM 1 

A benzenoid graph cannot have only one odd-length sequence of trivalent 
vertices on its perimeter. 

Proof 

Let us write down the perimeter as a series d l t l d 2 t  2 . . .  dptp ,  where d i and t i 

denote the number of consecutive di- and trivalent vertices, respectively. This 
sequence should be started by counting at any divalent vertex preceded by the 
trivalent vertex. Let us define 

`52 = nz(black) - n2(white), 

A3 = n3(black) - n3(white), 

,5 = n(black) - n(white) = A 2 + `53,  
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with na(color) denoting the number of d-valent vertices having the specified 
color in G. 

First we derive a relation between A, A 2 and A 3. Each edge in a colored 
benzenoid graph joins a black vertex with a white vertex. Therefore, the number 
of  edges incident to black vertices equals the number of edges incident to white 
vertices: 

3n3(black) + 2n2(black) = 3n3(white) + 2n2(white). 

A regrouping of  terms in the last equation gives: 

3A 3 =  _ 2 A  2 ~ A 3 = - 2 / 3 A  2. 

By recalling the definition of A and by substitution of the A 3 term, one obtains: 

A = A 2 + A 3 = /~2  - (2 /3)A2 = A2/3" 

This result implies that: (i) A can be determined by considering only the 
perimeter of  a benzenoid graph, and (ii) A 2 must be a multiple of  3, i.e. the possible 
values of A 2 are 0, +3,  +6  . . . . .  

Let us determine A2 by considering the aforementioned series d~ tl d2t2.., dp tp. 
In order to derive A2, the series is compressed in the following way. First, all even 
fragments di and ti are omitted from the series. These fragments contain equal 
numbers of black and white vertices and do not affect the starting color in the next 
fragments, hence their presence can be ignored. Second, in the resulting sequence, 
all d-fragments, now consecutive, and t-fragments, now consecutive, are replaced 
by their sums. The result is a series of the same form as the starting one, but shorter. 
The compression is repeated until the sequence remains unchanged. It has the form 
d~t~d~t~.., dqtq, where all d/' and ( a r e  exclusively odd numbers. One should note 
that, when colored, all d ' - fragments  in the series have an excess of the same color 
in the amount of  exactly 1 vertex. Therefore, [ A2I = q. 

If the perimeter were imagined to have only one t-sequence of an odd length, 
the compression would yield q = 1, and consequently A 2 = + 1. However, as our 
previous consideration shows, this is an impossible value for A2. [] 

PROPOSITION 2 

A dualist which satisfies conditions ( i ) - (vi)  has an even number of  vertices. 

Proof 
First we prove that each vertex in the valid dualist (one satisfying the stated 

conditions) belongs to at least one hexagon. According to condition (iv), a vertex 
which would not be in a hexagon could not be in any other cycle either. Thus, the 
vertices of the dualist could be partitioned into cyclic and acyclic vertices. A graph- 
induction by only cyclic vertices generates a (disconnected) "subdualist" whose 
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components are, in a graphical sense, linked benzenoids [12]. A linked benzenoid 
is produced by linking two (possibly also linked) benzenoids by a single edge, 
provided that the resulting graph is embeddable into the hexagonal lattice. The 
dualist in fig. 3 is an example of  a linked benzenoid dualist. 

The notion of  the perimeter, common to benzenoid graphs, can be extended 
to a linked benzenoid dualist by considering the present bridges as two-membered 
cycles. The perimeter is traced while keeping the side on which an "inside" of  the 
dualist is positioned. The structural details on the perimeter; fissure, cove and fjord, 
are defined in the usual way [9, 12]. 

When applied to a pure benzenoid dualist, conditions (ii) and (v) are equivalent 
to forbidding the presence of fissures, coves and fjords on the perimeter. A fissure 
corresponds to an M-fragment, while fjord and cove imply the edge and the vertex, 
respectively, not allowed by condition (ii). The way in which a bridge links two 
(linked) benzenoid parts B] and B 2 in the valid dualist is depicted in fig. 8. One 
should note that the presence of a link between B~ and B2 does not affect the 
fulfillment of  criterion (v) when applied to separate B1 o r  B 2. 

I 
I 
I 

s 

! 
! 

l 

B1 
! 
! 

! I 
I 
I 

the link 

B2 

Fig. 8. The fragment of the valid dualist 
containing a bridge between two hexagons. 

A dualist possessing an acyclic vertex can be transformed into a tree by 
substituting each linked benzenoid component by a single vertex. Due to condition 
(iv), each terminal vertex in the resulting tree must correspond to some linked 
benzenoid component of the starting dualist, connected to a single acyclic vertex. 
An inspection shows that because of  conditions (ii) and (v), the acyclic vertex must 
be divalent and linked to a cyclic component in a way depicted in fig. 9. The shown 
fragment indicates that a separate benzenoid component needs to possess a fissure 
near the vertex which is to be linked with an acyclic vertex. This fissure should be 
the only odd-length sequence of trivalent vertices on the perimeter of the corresponding 
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C ~  - the fissure on the perimeter of the 
linked benzenoid component 

a divalent acyclic vertex , 

! ! 
! ! 

I ! 

a linked benzenoid component 

Fig. 9. The fragment of the (hypothetical) valid dualist 
with a cyclic component linked to a single acyclic vertex. 

benzenoid part of  the dualist. However,  from theorem 1 we know that such a 
benzenoid does not exist, and therefore a linked benzenoid component cannot be 
connected to a single acyclic vertex. This further implies that the valid dualist 
cannot possess an acyclic vertex and that it must be, in a graphical sense, a linked 
benzenoid. 

It has been shown in [12] that a necessary and sufficient condition for a 
(linked) benzenoid to be an all-benzenoid graph [9] is the absence of  fissures and 
coves on the perimeter. Since conditions (ii) and (v) forbid the presence of  fissures 
and coves (and fjords) on the perimeter, the linked benzenoid corresponding to the 
valid dualist must be an all-benzenoid graph. Therefore, the number of  vertices in 
the valid dualist is a multiple of  6 and, of course, an even number. [] 

Now conditions ( i ) - (v )  can be expressed in a more concise manner. The 
dualist being, in a graphical sense, a linked benzenoid graph without fissures, coves 
and fjords, automatically satisfies conditions ( i ) - (v) ,  and only condition (vi) needs 
to be accounted for separately. 

PROPOSITION 3 

Let G be a benzenoid graph with h hexagons and let A denote its color 
excess [9]. Then the number of vertices N in D[H(G)] equals 

N = 2 h - I + A  or N = 2 h - I - A .  

Proof 

N is equal to the number of  triangles in H(G). When H(G) is constructed 
from the colored G, one finds that a triangle is created in each hexagon and around 
non-adjacent trivalent vertices in G. Two graphs H(G) are possible and the respective 
numbers of  triangles in them Nl and N2 are: 

N1 = h + n3(white), N 2 = h + n3(black), 
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where h denotes the number of hexagons in G. The following relation is 
known [9]: 

n3(black) + n3(white) = 2h - 2 

and from the proof of theorem 1, one obtains 

n3(black) - n3(white) = A3 = -2A.  

From the last two equations, one easily arrives at: 

n 3 ( w h i t e ) = h - l + A ,  n 3 ( b l a c k ) = h - l + A .  

Substitution into the expressions for N1 and N 2 gives the formulas stated in the 
proposition. [] 

An important consequence of the two propositions is: 

COROLLARY 4 

An isospectral pair of  benzenoid graphs G~ and G 2, each with an even number 
of vertices, if existent, does not possess an isomorphic pair {H(GI),  H(G2)},  i.e. it 
cannot be obtained by the Heilbronner-like procedure. 

Proof  

We have proven that conditions ( i ) - (v)  are necessary in order for G1 and G 2 

to have an isomorphic pair {H(G1), H(G2)}. By proposition 2, the number N of 
vertices in D[H(G)] is even. Then from proposition 3, it follows that A must be an 
odd number, and this is possible only if G has an odd number of  vertices. [] 

PROPOSITION 5 

Benzenoid graphs G1 and G2 having an isomorphic pair {H(G1), H(G2)} must 
have an equal number of vertices. 

Proof  

Let n denote the number of vertices in a benzenoid graph G and let ni be the 
number of  internal vertices in G. Let p be the size of the perimeter and h be the 
number of  hexagons in G. The number of edges in G is denoted by m. The following 
formulas may be found in [91: 

n = 4h + 2 -  ni, 

m = n + h + l ,  

p = 4h + 2 -  2hi. 
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From them, one obtains 

n = (4m + p + 6)/6. 

GI and G2 must have an equal number of edges (m), since m is determined by the 
sum of the numbers of loops on the vertices of H(G1) -=- H(Gz). From the relation 
between G and H(G), it is clear that the perimeter of G is twice as large as the 
perimeter of H(G). Thence, the perimeters of G1 and G2 are of equal size (p). By 
the latter equation, they must also have an equal number of vertices (n). [] 

. The necessary conditions for the construction of IBGs by the Heilbronner- 
like procedure are also sufficient 

In order to prove that conditions (i)-(vi) are not only necessary but also 
sufficient, we have to verify that their fulfillment guarantees that two non- 
isomorphic IBGs will be obtained by the described procedure. The three required 
properties of the constructed graphs: benzenoid character, isospectrality and non- 
isomorphism, are examined separately. 

From the relationship between the triangular lattice and its dualist - t h e  
hexagonal lattice, shown in fig. 5(b) - it is clear that the dualist can be placed on 
the triangular lattice so that every one of its vertices occupies a triangle. The H'-  
graph is obtained as a subgraph of the triangular lattice induced by the vertices of 
the occupied triangles. Pathological situations can arise in only two ways: if the 
perimeter of the H'-graph contains the closed loop, and if two vertices nonadjacent 
in the dualist correspond to two adjacent triangles in the H'-graph. Since terminal 
vertices are not allowed in the dualist, the first situation occurs only in the way 
depicted in fig. 6(b). An inspection of the underlying fragments in the dualist 
reveals that both situations are prevented by condition (ii). Hence, the construction 
of the H'-graph with a well-defined parameter is assured. 

An H'-graph can be placed on the hexagonal lattice in two different ways so 
that the vertices overlap. The two possible placements are related by a shift of the 
H'-graph along a single edge in the hexagonal lattice. In order to derive a benzenoid 
graph from the H'-graph, it is sufficient to reconstruct its perimeter. The inner part 
can be obtained by the induction of edges lying between vertices on and inside the 
perimeter. Figure 10 depicts the reconstruction around vertices of various degrees 
in an H'-graph. In all allowed situations, the reconstruction of the perimeter proceeds 
smoothly in both projected ways. Thus, the two graphs produced by the described 
procedure will be of benzenoid character provided the starting dualist obeys 
conditions (i)-(iv).  

Figure 10 also shows that the vertices of the H'-graph, when they become 
a part of the derived benzenoid graphs, have equal numbers of neighbors in both 
constructed graphs G1 and G2. Therefore, the numbers of loops on the vertices of  
an H'-graph derived from either of the two constructed graphs are the same. This 
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not allowed by the condition (v) A 3 A ~  

/ / - - -  / ' ~  

2 

Fig. 10. The vertices of various degrees in an H'-graph are depicted in the middle column. 
In the left-most column are shown the parent fragments of the dualist, while the right-most 
column shows the constructed fragments of a benzenoid graph. The top-most row represents 
an inner vertex; all others are on the perimeter. Heavy lines indicate the perimeter edges. 
Numbers at the heavy-dot vertices are equal to the number of loops in the respective H-graph. 



D. Babi6, I. Gutman, lsospectral benzenoid graphs 277 

means that the two H'-graphs H(G1) and H(G2) are isomorphic. By proposition 5, 
GI and G2 have an equal number of vertices, and by theorem in [7], they must be 
isospectral. 

It remains to be shown that the fulfillment of the prescribed conditions 
guarantees that the two constructed graphs will not be isomorphic. We do this by 
proving that the isomorphism in this case implies the violation of condition (vi). 
Let us color the vertices in G1 and G2 so that those which originate from the 
common H'-graph have equal colors in both G1 and G2. The presumed isomorphism 
maps the vertices of G1 onto those of G2 so that the color of all vertices is either 
kept the same or changed into the opposite one. The last possibility must be abandoned 
since it implies the same number of the two kinds of colored vertices, which cannot 
be true by corollary 6. Therefore, the vertices from G1 originating from the H'- 
graph are mapped onto the same ones in G2. The triangles which were chosen as 
"empty" for generating G~ must be mapped onto the "empty" triangles in G2. This 
means that the considered isomorphism represents an automorphism of the H'-  
graph which interchanges the two complementary sets of triangles. Bearing in mind 
their correspondence with the colored vertices in D[H(G)], it follows that the two 
vertex colorings of D[H(G)] are equal. 

6. Conclusions 

The procedure presented in [5] exhausts the possibilities for the construction 
of IBGs on the basis of isomorphic H-graphs, i.e. by the Heilbronner-like procedure. 

There is no pair of isospectral benzenoid graphs each with an even number 
of vertices having a pair of isomorphic H-graphs. 

It has been ascertained in section 4 that the valid dualist corresponds to a 
linked benzenoid graph which can be partitioned into disjoint hexagons [12]. This 
is in parallel with the observation reported in [5] that the isospectral benzenoid pairs 
generated by the Heilbronner-like procedure can be viewed as being built from 
phenalene tiles. Characteristics of the phenalene graph relevant for the construction 
of isospectral pairs have already been studied in [13]. Each phenalene tile corresponds 
to a separate hexagon in the dualist D[H(G)], and the "upside-down" procedure [5] 
can be viewed on the dualist level as a transition from one to another colored 
dualist. This leads to the conclusion that the Heilbronner-like procedure for the 
construction of isospectral benzenoid graphs is equivalent to building them from 
phenalene tiles by using the "upside-down" transformation. However, this interpretation 
will be considered in a separate paper. 
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